原子物理结课论文塞曼效应

原子物理结课论文塞曼效应

问:塞曼效应是什么?
  1. 答:1实验简介(Introduction)
    1.1塞曼效应的简介
    塞曼效应是属于原子物理范畴的一个著名实验,它是研究原子的光谱受磁场影响的一个基础性实验。
    1.2塞曼效应的历史意义
    塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。
    塞曼效应是继法拉第磁致旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子结构有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最重要的发现之一。
    1902年,塞曼与洛仑兹因发现塞曼效应而共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。
    2实验目的(Experimental purposes)
    掌握法布里—珀罗标准具的原理和使用;
    学习观察低压汞灯的谱线在磁场中塞曼分裂谱线,并测定它们的裂距和偏振态;
    从谱线的塞曼裂距可确定原子能级的J值及相应的g值。如果原子遵从LS藕和,则可由g值判断该能级的L和S值。
    3实验原理[1](Experimental principles)
    3.1原子的总磁矩与总角动量距的关系
    塞曼效应的产生是由于原子的总磁矩(轨道磁矩和自旋磁矩)受外磁场作用的结果。在忽略核磁矩的情况下,原子中电子的轨道磁矩mL和自旋磁矩mS合成原子的总磁矩mJ,与电子的轨道角动量L,自旋角动量S合成总角动量J之间的关系,可用图2来计算。
    具体的可以看一下这个链接,里面有详细的
  2. 答:磁场的存在使得原子中各个能级分裂成几个次能级,当这样的原子被激发后,它们的特征谱线也将分裂成几条靠近原始线的谱线。由于发现者是德国物理学家P.塞曼,因此,这种现象被称为“塞曼效应”。借助于塞曼效应,太阳黑子的磁场性质已经被确定,还发现许多恒星出现强磁化——一种很有意义的信息。
问:塞曼效应 解释一下。。。
  1. 答:塞曼效应是指原子在外磁场中发光谱线发生分裂且偏振的现象;
    历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。
    1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。
    塞曼效应实际用途
    1、由塞曼效应实验结果去确定原子的总角动量量子数J值和朗德因子g值,进而去确定原子总轨道角动量量子数L和总自旋量子数S的数值。
    2、由物质的塞曼效应分析物质的元素组成。
    3、原子吸收、原子发射光学背景校正技术。
    4、塞曼效应的研究推动了量子理论的发展,在物理学发展史中占有重要地位。
    以上内容参考 
问:氢原子的简单塞曼效应是什么?
  1. 答:塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。
原子物理结课论文塞曼效应
下载Doc文档

猜你喜欢